A Hierarchical Approach to Computer-Aided Design of Quantum Circuits

نویسندگان

  • Marek Perkowski
  • Martin Lukac
  • Pawel Kerntopf
  • Woong Hwangbo
  • Jung-wook Kim
  • Yong Woo Choi
چکیده

A new approach to synthesis of permutation class of quantum logic circuits has been proposed in this paper. This approach produces better results than the previous approaches based on classical reversible logic and can be easier tuned to any particular quantum technology such as nuclear magnetic resonance (NMR). First we synthesize a library of permutation (pseudobinary) gates using a Computer-Aided-Design approach that links evolutionary and combinatorics approaches with human experience and creativity. Next the circuit is designed using these gates and standard 1*1 and 2*2 quantum gates and finally the optimizing tautological transforms are applied to the circuit, producing a sequence of quantum operations being close to operations practically realizable. These hierarchical stages can be compared to standard gate library design, generic logic synthesis and technology mapping stages of classical CAD systems, respectively. We use an informed genetic algorithm to evolve arbitrary quantum circuit specified by a (target) unitary matrix, specific encoding that reduces the time of calculating the resultant unitary matrices of chromosomes, and an evolutionary algorithm specialized to permutation circuits specified by truth tables. We outline interactive CAD approach in which the designer is a part of feedback loop in evolutionary program and the search is not for circuits of known specifications, but for any gates with high processing power and small cost for given constraints. In contrast to previous approaches, our methodology allows synthesis of both: small quantum circuits of arbitrary type (gates), and permutation class circuits that are well realizable in particular technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate

In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

Computer-aided Design for Next-generation Quantum Computing Systems

A computer-aided design (CAD) flow for large-scale quantum circuits is presented in this chapter. The proposed flow along with other stand-alone tools are implemented in a tool suite called Next-generation Quantum Computing Systems (NQCS) Toolbox, which receives as input a physical machine description (PMD), a quantum error correction (QEC) code, a quantum control (QC) protocol, as well as a qu...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002